
Making a robot ROS 2
powered
a case study using the UR manipulators

ROS World 2021 - Day 2: Oct, 21st 2021

Denis Štogl, Nathan Brooks, Lovro Ivanov, Andy Zelenak - PickNik Robotics
[denis.stogl, nathan, lovro.ivanov, zelenak] @picknik.ai
Rune Søe-Knudsen - Universal Robots
rsk@universal-robots.com

https://creativecommons.org/licenses/by/4.0/

Outline

● Requirements on control software

● Support libraries in ROS/ROS2

● Hardware abstraction

● Planning and collision-avoidance with a manipulator

● What should I do if my robot has multiple control-modes?

● Handling of “generic” interfaces

● Using custom controllers

Repository: https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver

https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver

Requirements from Control Software

● Robot movement
○ Time-synchronized joint movements

○ Executing trajectories with time and spatial constraints

○ Support for different control modes, e.g., position, velocity

● Feedback from integrated sensors
○ Joint States

○ E.g., Force Torque Sensor (FTS)

● Digital and Analog Inputs and Output
○ Reading and controlling

● Status feedback and general operation:
○ Robot and Safety mode

○ Status: brakes, power

○ Program execution control

Universal Robots - Manipulators

● Movement control
○ Commands: position, velocity

○ States: position, velocity, effort

○ Cartesian: TCP position/velocities

● Sensors:
○ TCP Force Torque Sensor (FTS)

● I/O control
○ Analog IOs

○ Digital IOs

● Tool:
○ Output voltage and current

○ Analog Inputs

Universal Robots - Manipulators

● Status and General Operation:
○ Robot mode

○ Safety mode

○ General Operation: State

○ Teach pendant: “speed scaling”

○ Control:

■ Unlock protective stop

■ Restart Safety

■ Power on

■ Power off

■ Break release

■ Stop program

■ Play program

What to do in ROS/ROS2?

● ros(2)_control
○ control framework for controlling physical robots

○ set of standard controllers

○ hardware-agnostic

● MoveIt(2)
○ motion and manipulation planning library

○ environment modelling and collision avoidance

○ controlling robot with a joystick — Servoing

○ hardware-agnostic

What to do in ROS2?

Enabling a robot for ros2_control
URDF-description for ros2_control / Implementing hardware
interface / Attaching standard controllers

URDF-description for ros2_control

Implementing hardware interface (driver)

https://design.ros2.org/articles/node_lifecycle.html

https://design.ros2.org/articles/node_lifecycle.html

Configuring standard controllers

Planning and collision avoidance
with MoveIt 2

Creating configuration files for MoveIt 2 - details

● Beside URDF file of the robot, MoveIt2 additional configuration files

● Those files are usually placed in a separate package, e.g., “<robot>_moveit_config”

● “kinematics.yaml” — definition/configuration of kinematics plugin (IK and FK)

● “<robot>.srdf” — semantic robot description format
○ Planning groups, links and joints

○ End effector, virtual-joints

○ Pre-defined states (positions)

Creating configuration files for MoveIt 2 - details

● “controllers.yaml” — controller definition used by MoveIt2

● “ompl_planing.yaml” — parameters for motion planning

● “servo.yaml” — configuration for MoveIt2-Servo

Creating configuration files for MoveIt 2 - details

● Start “move_group” node with:
○ “kinematics.yaml”

○ “ompl_planing.yaml” → request adapters

○ configuration for “moveit_controller_manager” and “controllers.yaml”

○ configuration for trajectory execution and planning scene monitor

● Example resources:
○ moveit_resources:

https://github.com/ros-planning/moveit_resources/tree/ros2

○ UR ROS2 driver:
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver/tree/main/ur_moveit_config

○ ur_moveit.launch.py:
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver/blob/main/ur_bringup/launch/ur_moveit.launch.py

https://github.com/ros-planning/moveit_resources/tree/ros2
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver/tree/main/ur_moveit_config
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver/blob/main/ur_bringup/launch/ur_moveit.launch.py

Video

https://docs.google.com/file/d/19y4V--3bMqJAL-KfsSvmgWjmXWtoWhPX/preview

What should I do if my robot has
multiple control-modes?

Using different controllers for control modes

Add controllers for other control-mode

● Forwarding controller

● Joint Trajectory controller with different set of command interfaces

I want to control digital and
analog IOs of my robot. Is this
possible?

Handling of “generic” interfaces

● Using <gpio> tag for non-movement

interfaces

● (Optional: using semantic components to simplify
their use) — check the talk on ros2_control 😀

Creating a custom controller for
my robot

Implementing a controller for ros2_control

● Implement “Controller Interface”-Class

Custom Controller for IOs and Status

● Publishers:
○ IO states

○ Tool data

○ Robot Mode

○ Safety Mode

○ Speed Scaling

○ Robot Program Status

● Services:
○ Set IO

○ Set Speed Slider (speed scaling)

○ Set Payload

○ Tare FTS Sensor

Velocity-scaling controller

● Extending standard Joint Trajectory Controller to support speed scaling

● Adapting the commanded Joint Trajectory with speed scale

● Speed slider can be controlled from teach pendant and from ROS2 side

Video

https://docs.google.com/file/d/1AmYalk_nyIfL1wu8MHMbsJSqAA3FhgHd/preview

And now the conclusion…

UR ROS2 Driver Capabilities

● Multi-command interface support
○ Switching between control modes

● Force-Torque Sensor access

● Digital and Analog IO control

● Access to robot’s status flags

● Readout and apply factory-kinematic calibration

● MoveIt2 and MoveIt2-Servo integration

● Simple testing using “URSim” — Docker container → Execution testing in CI!
○ Check repository: https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
○ URSim container: https://hub.docker.com/u/universalrobots

through “update” loop

https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
https://hub.docker.com/u/universalrobots

Contributions to ros2_control

● Joint Trajectory Controller Extensions
○ Velocity command support
○ Constraint propagation

● Speed Scale Joint Trajectory Controller
○ With hardware-feedback integration

● Development of concepts
○ IO control
○ Robot Status

● Future influence of ros2_control-framework
○ TCP — Pose Broadcaster
○ Cartesian space controllers
○ Generic Robot Status Broadcaster

Thank you for your attention!
User feedback and suggestion for
improvements are very welcome!

ros@universal-robots.com / or open an issue at GitHub

mailto:ros@universal-robots.com

Bonus: Setting up CI for a robot driver

● Doing proper testing, especially execution on simulated hardware is nontrivial :)

● 3-stage build CI (does not run tests/tests with hardware)
○ Enables different levels of “failure-anticipation” from upstream packages
○ Binary: all dependencies from binaries (exect not-yet-released) — industrial_ci

■ on: PR and merge
○ Semi-Binary: the main dependencies are built from source — industrial_ci

■ on: PR and merge
○ Source: also core ROS2 packages are built from source — ros-tooling/action-ros-ci@v0.2

■ scheduled (because it takes long time)
● Execution Tests

○ Enables check of driver and controllers execution
○ Run tests with simulated robot URSim

■ at least 2 workers — ros2_control and URSim
■ scheduled (because it needs “free” workers to get proper results)

● Format + ROS2 Lint: on PR
○ Keeps your code well formatted and clean

https://github.com/ros-industrial/industrial_ci
https://github.com/ros-industrial/industrial_ci
https://github.com/ros-tooling/action-ros-ci

