

Tricycle Controller with ros2_control

ROS Meetup Munich Feb 2023

Presented by:

Johannes Plapp - CTO

Tony Najjar - Senior Robotics Software Engineer

0 | Outline

1. Pixel Robotics

- a. Who are we?
- b. Our concept
- c. Robot steering geometries

2. Introduction to ros2_control

- a. What is ros2_control?
- b. Why we migrated to ros2_control?
- c. Our ros2_control architecture

3. Tricycle controller

- a. Input/Output
- b. Core Logic

4. Future Plans

5. Q&A

1 PIXEL ROBOTICS

Who are we?

Founded in 2020

Munich startup

International team

In operation at 3 customers

Series production in Munich

1 PIXEL ROBOTICS

Our Concept

Navigation with **Al cameras**

Digital Twin Integration

Scalable system approach

Easy process modelling

One-to-one replacement

Human-robot cooperation

1 PIXEL ROBOTICS

Robot steering geometries

Ackermann

Commonly used for cars

Tricycle

Similar to ackermann, but only a single front wheel

Commonly used for small robots

Can turn on the spot

Hard to control if robot heavy and driven wheels not centrally placed

What is ros2_control?

ros2_control is a framework for the control of robots using ROS2.

Its main goals are:

- Offer a "home" for the controllers and hardware interfaces to manage them (loading/unloading, execution loop, resource access management...)
- Abstract hardware and low-level control for other frameworks like Movelt2 and Nav2
- Decouple controllers from hardware interfaces for modularity and reusability

2 INTRODUCTION TO ROS2_CONTROL

What is ros2_control?

CC-BY: Denis Stogl, Bence Magyar (ros2_control)

2 INTRODUCTION TO ROS2_CONTROL

Why we migrated to ros2_control?

- Opportunity to migrate control stack to C++ for better performance (initial prototype was in Python)
- Free code! There are already public controllers and hardware interfaces to take advantage of:
 - Gazebo/Webots Hardware interfaces
 - joint_state_broadcaster
 - Mobile base controllers
 - joint_trajectory_controller
 - general-purpose PID controller (<u>coming soon</u>)
- Use the same controller for all hardware interfaces
- General lifecycle management and resource access control
- All the other goodies we might want to use some day (chaining controllers, emergency stop handling, variable rate controllers, transmissions, custom interface types, etc...)

2 INTRODUCTION TO ROS2_CONTROL

Our ros2_control architecture

ROBOTICS

Input/Output

Core Logic

Joints command generation

$$steering_angle(t) = \arctan(\frac{angular.z(t) \cdot d}{linear.x(t)})$$
$$speed(t) = \frac{linear.x(t)}{r \cdot \cos(steering_angle(t))}$$

Odometry

 $\begin{aligned} linear.x(t) &= speed(t) \cdot r \cdot \cos(steering_angle_{read}(t)) \\ linear.y(t) &= 0 \\ angular.z(t) &= \frac{speed(t) \cdot r}{d} \sin(steering_angle_{read}(t)) \end{aligned}$

ROBOTICS

- Option to publish odom=>base_link directly as tf2_msgs/TFMessage or nav_msgs/Odometry (for further fusion)
- Timeout and stop if no Twist is received for a configurable amount of time
- Rate limiter Limits velocity, acceleration, jerk on wheel commands

Extra Features

Scaling the command speed in function of the steering angle difference, in other words: don't roll too much before the steering wheel is at the correct angle

ROBOTICS

The controller has been quite stable for us. No bugs have been reported since the release in September 2022 but we are looking forward to more community testing and feedback

There are plans to create a base *SteeringController* that steering controllers would inherit from (ackermann, tricycle, bicycle). For more details see: <u>https://github.com/ros-controls/ros2_controllers/pull/484</u>

5 Q&A

https://github.com/ros-controls/gazebo_ros2_control

Contact

16

Johannes Plapp CTO johannes.plapp@logivations.com

Pixel Robotics GmbH Riesstraße 18 80992 München Tony Najjar Senior Robotics Software Engineer tony.najjar@logivations.com

Pixel Robotics GmbH Riesstraße 18 80992 München

www.pixel-robotics.eu

© 2022 Pixel Robotics GmbH. All rights reserved