

Admittance Control in ROS2

plus hints for command smoothing

October 2021

Dr. Andy Zelenak, Denis Stogl

zelenak@picknik.ai, denis.stogl@picknik.ai

Admittance control in ROS2

- Motivation
- Video!
 - A real robot doing real work
- ros2_control implementation
- Block diagram
- How to use it
- Tips for motion smoothing

Admittance

What happens when a manipulator unexpectedly contacts the environment?

Contact could occur because ...

- Dynamic environment
- Model or sensor uncertainty
- Manufacturing tasks require interaction with the physical world

% Nuclear Robotics Group

Contact with the environment

% Nuclear Robotics Group

A good way to handle this contact

- The robot acts like a spring
 - The robot moves in proportion to the measured wrench

Simplest example for one dimension:

$$\Delta x = \frac{1}{stiffness} \cdot F$$

Full equation we used:

$$\ddot{x} = \frac{1}{mass} \cdot (F - damping \cdot \dot{x} - stiffness \cdot (x_{desired} - x_{current}))$$

- → Mass/damping/stiffness are virtual parameters. Likely not equal to actual robot dynamics
- → Works for trajectories as well as online, streaming commands

A large, powerful robot doing real work

Block Diagram

(Further refinements can be added. This is a good starting point)

How to use it

Where to get it

- Preliminary PR to ros2 control
 - We expect to merge for the ROS2 Rolling distribution

The fully working branch

Use it like any other ros2_controller

- Add ros2_control interfaces to ros2_control.xacro
 - <u>Example</u>
- Add controller name and parameters to controllers.yaml
 - o <u>Example</u>
- Spawn the controller from a launch file
 - <u>Example</u>

Circular Dependency Issue

- The draft PR depends on MoveIt2 to perform differential kinematics
 - We don't want a circular dependency between ros2_control and Movelt2
 - o But...
 - ros2_control probably should not get involved with robot kinematics

The solution may be a kinematics plugin to get the Movelt dependency out of ros2_control

Bonus -- Command Smoothing

- Reflexxes Type II in "velocity mode" works well for smoothing of streaming commands
 - Acceleration and velocity limits
 - A ROS-wrapped version (ROS1 and ROS2)
- Ruckig works well for smoothing of trajectories (i.e. multiple waypoints transmitted at once)
 - Velocity, acceleration, and jerk limits
 - MoveIt2 PR for inspiration
- Ruckig does not seem well-suited for streaming commands
- For stability: the output state of Reflexxes or Ruckig should be fed back as the current state of the robot in the next iteration

