HBPIXEL
*ROBOTICS

Tricycle Controller with ros2_control
ROS Meetup Munich Feb 2023

Presented by:
Johannes Plapp - CTO

Tony Najjar - Senior Robotics Software Engineer

0 | Outline

Pixel Robotics

a. Who are we?

b. Our concept

c. Robot steering geometries
Introduction to ros2_control

a. Whatisros2_control?

b. Why we migrated to ros2_control?
c. Ourros2_control architecture
Tricycle controller

a. Input/Output

b. Core Logic

Future Plans

Q&A

BPIXEL
*ROBOTICS

1| PixeL RoBorTics

Who are we?

I,:’\\ Founded in 2020
9 Munich startup

m% International team

In operation at 3 customers

h Series production in Munich

BPIXEL
*ROBOTICS

1| PixeL RoBorTics

Our Concept

Navigation with
Al cameras

Digital Twin
Integration

Scalable
system
approach

o b
PIXEL

. 'RO_BQTICS
e .‘..,:~ ——
3 .‘U .«-.{ -
o e il
Easy process bee? g > ‘)
modelling .
o g o -
- ™ , By -
s — -2 T
One-to-one 7 li
replacement ~

. 2 Human-robot

' ﬂ cooperation
1> Fast ROI

s

1] PixeL RoBorics R oBaheS

Robot steering geometries

A A e

\
\ 1
\ /
\ 1
\ /
\ 1
\ /
\ 1
\ /
\ !
HHI 5 m E] [J
G

Ackermann Tricycle Differential drive
Commonly Similar to Commonly used
used for cars ackermann, but for small robots

only a single front
wheel Can turn on the
spot

Hard to control if
robot heavy and
driven wheels not
centrally placed

HPIXEL
2 | INTRODUCTION TO ROS2__ CONTROL *ROBOTICS

What is ros2_control?

ros2_control is a framework for the control of robots using ROS2.

Its main goals are:
e Offer a "home” for the controllers and hardware interfaces to manage them (loading/unloading,
execution loop, resource access management..)
e Abstract hardware and low-level control for other frameworks like Movelt2 and Nav2

e Decouple controllers from hardware interfaces for modularity and reusability

HPIXEL
2 | INTRODUCTION TO ROS2__ CONTROL *ROBOTICS

What is ros2_control?

3rd party ros2_control & friends

> Movelt2

Simulation
arm_controller
i A Position
status_broadcaster .
A @ Velocity
A hteitee B Acceleration
base_controller @ 10s
RA Status
tool_controller @ <cool_itf>

<your_cool_app>

<cool_controller>

Tool
HW Interface

Maximize resources spent on - Leverage existing controllers - Leverage simulation backend
actual client application - Implement custom ones, extend existing - Real robot backend - extend existing ones or create your own

CC-BY: Denis Stogl, Bence Magyar (ros2_control)

HPIXEL
2 | INTRODUCTION TO ROS2__ CONTROL *ROBOTICS

Why we migrated to ros2_control?

e Opportunity to migrate control stack to C++ for better performance (initial prototype was in Python)

e Free codel! There are already public controllers and hardware interfaces to take advantage of:
o Gazebo/Webots Hardware interfaces

joint_state_broadcaster

Mobile base controllers

joint_trajectory_controller

general-purpose PID controller (coming soon)

O O O O

e Use the same controller for all hardware interfaces
e General lifecycle management and resource access control

e All the other goodies we might want to use some day (chaining controllers, emergency stop handling,
variable rate controllers, transmissions, custom interface types, etc...)

https://github.com/ros-controls/ros2_controllers/pull/434

2 | INTRODUCTION TO ROS2__ CONTROL

Our ros2_control architecture

Controller Management

BPIXEL

*ROBOTICS
|
ros2_control & friends @
* Not all connections are visualized for visibility AR
__________________ , e e s 2
1 ' Resource Management :
! 1
Gazete

3rd party

Our App

1
1
:
1
el fork_controller
i
1
1
1
1
1
1
1
1

—»| tricycle_controller

HW
Interface

Pixel PT
HW
Interface

joint_state_broadcaster Interface

Mock HW

A Position
@ Velocity
- Edited from original:
Bl Acceleration
https://github.com/ros-
‘ Effort controls/control.ros.org/blob/master/doc/resources/diagrams/ros2_control.drawio

Denis Stogl, Bence Magyar (ros2_control)

3 | TRicycLE CONTROLLER BPIXEL

Input/Output

ros2_control & friends @
* Not all connections are visualized for visibility Rt

Controller Management :Resource Management:
—

e\

Gazebo

HW
Interface

3rd party

our App

Interface |

Mock HW !
Interface

2

I

]

I

]

I

1

1

]

]

1

1

I

]

]

! ¢ steering angle Pixel PT

m‘ tricycle_controller pﬂ‘ HW |~

. traction speed
1

1

]

]

1

]

]

1

]

I

]

I

1

]

1

ROS Action call A Position
ROS Topic @ Velocity

Bl Acceleration

Shared memory @ Efort
Gazebo APl Edited from original

https://github.com/ros-

:> CAN bus controls/control.ros.org/blob/master/doc/resources/diagrams/ros2_control.drawio

Denis Stoal Bence Maavar (ros? control)

3 | TRicycLE CONTROLLER BPIXEL

Core Logic

Yp / Joints command generation
angular.z(t) - d

)

steering_angle(t) = arctan(F 0
inear.x

linear.x(t)

speed(t) =
peed(i) r - cos(steering_angle(t))
Odometry
- X: linear.x(t) = speed(t) - r - cos(steering_angle,qq,q(t))

linear.y(t) =0
_ speed(t) -7

y sin(steering_angle,.,q(t))

angular.z(t)

see
http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Kinematics.pdf

11

http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Kinematics.pdf

3 | TRicycLE CONTROLLER -%Igé%(TIIECIg

Extra Features

e Option to publish odom=>base_link directly as tf2_msgs/TFMessage or nav_msgs/Odometry (for further
fusion)

e Timeout and stop if no Twist is received for a configurable amount of time

e Rate limiter - Limits velocity, acceleration, jerk on wheel commands

12

3 | TRicycLE CONTROLLER -%Igé%(TIIECIg

Extra Features

Scaling the command speed in function of the steering angle difference, in other words: don’t roll too much
before the steering wheel is at the correct angle

CommandSpeed &

alpha write, Ws write] = twist to ackermann(linear command, angular command);
TargetSpeed
X double alpha delta = abs(alpha write - alpha read);
double scale;
if (alpha delta < M PI / 6
scale = 1;
else if (alpha delta > M PI 2
scale 0.01;
else
0.5¢
scale = cos(alpha delta);
Ws write *= scale;
0 2 13
|Target Angle — Current Angle| (radians)

4 | FUTURE PLANS BPIXEL

The controller has been quite stable for us. No bugs have been reported since the release in September 2022

but we are looking forward to more community testing and feedback

There are plans to create a base SteeringController that steering controllers would inherit from (ackermann,

tricycle, bicycle). For more details see: https://github.com/ros-controls/ros2 controllers/pull/484

14

https://github.com/ros-controls/ros2_controllers/pull/484

BPIXEL
*ROBOTICS

- "’ 0 2 l‘\ S5 T |. . . ':‘,' o~ l. . I = nl . &yinteract Move Camera L_J focus Camera ==Measure 20 Pose Estimate 20 Goat Pose § Publish Pont
v o . [.

© Time °

Real T Factor Itera - e =
" e s ROS Time: |1674206068.57 | ROS Elapsed: 1367.47 Wall Time: |1674206068.60 | wall Elapsed: | 1367.47 Experimental

Reset 31fps

ithub.com/ros-controls/gazebo ros2 control

https://docs.google.com/file/d/1j0FSllXVzTY0HRW_X1SBYUcYwl0J_JH2/preview
https://github.com/ros-controls/gazebo_ros2_control

Contact

Johannes Plapp
CTO
johannes.plapp@logivations.com

Pixel Robotics GmbH
Riesstralze 18
80992 MUnchen

[O -Rosores

www.pixel-robotics.eu

Tony Najjar
Senior Robotics Software Engineer
tony.najjar@logivations.com

Pixel Robotics GmbH
Riesstralze 18
80992 MUnchen

Open positions

© 2022 Pixel Robotics GmbH. All rights reserved

BPIXEL
*ROBOTICS

16

https://www.youtube.com/channel/UCKZWpMmhzLHJkPGBHtosFoA
https://www.linkedin.com/company/pixelrobotics/
http://www.pixel-robotics.eu/

