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Who are we?

I,:’\\ Founded in 2020
9 Munich startup

m% International team

In operation at 3 customers

h Series production in Munich
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Robot steering geometries
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Ackermann Tricycle Differential drive
Commonly Similar to Commonly used
used for cars ackermann, but  for small robots

only a single front
wheel Can turn on the
spot

Hard to control if
robot heavy and
driven wheels not
centrally placed




HPIXEL
2 | INTRODUCTION TO ROS2__ CONTROL *ROBOTICS

What is ros2_control?

ros2_control is a framework for the control of robots using ROS2.

Its main goals are:
e Offer a "home” for the controllers and hardware interfaces to manage them (loading/unloading,
execution loop, resource access management..)
e Abstract hardware and low-level control for other frameworks like Movelt2 and Nav2

e Decouple controllers from hardware interfaces for modularity and reusability
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What is ros2_control?

3rd party ros2_control & friends

> Movelt2

Simulation
arm_controller
i A Position
status_broadcaster .
A @ Velocity
A hteitee B Acceleration
base_controller @ 10s
RA Status
tool_controller @ <cool_itf>

<your_cool_app>

<cool_controller>

Tool
HW Interface

Maximize resources spent on - Leverage existing controllers - Leverage simulation backend
actual client application - Implement custom ones, extend existing - Real robot backend - extend existing ones or create your own

CC-BY: Denis Stogl, Bence Magyar (ros2_control)
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Why we migrated to ros2_control?

e Opportunity to migrate control stack to C++ for better performance (initial prototype was in Python)

e Free codel! There are already public controllers and hardware interfaces to take advantage of:
o Gazebo/Webots Hardware interfaces

joint_state_broadcaster

Mobile base controllers

joint_trajectory_controller

general-purpose PID controller (coming soon)

O O O O

e Use the same controller for all hardware interfaces
e General lifecycle management and resource access control

e All the other goodies we might want to use some day (chaining controllers, emergency stop handling,
variable rate controllers, transmissions, custom interface types, etc...)


https://github.com/ros-controls/ros2_controllers/pull/434
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Our ros2_control architecture

Controller Management
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HW
Interface

Pixel PT
HW
Interface

joint_state_broadcaster Interface

Mock HW

A Position
@ Velocity
- Edited from original:
Bl Acceleration
https://github.com/ros-
‘ Effort controls/control.ros.org/blob/master/doc/resources/diagrams/ros2_control.drawio

Denis Stogl, Bence Magyar (ros2_control)
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Input/Output

ros2_control & friends @
* Not all connections are visualized for visibility Rt
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# ROS Action call A Position
# ROS Topic @ Velocity

Bl Acceleration

# Shared memory @ Efort
# Gazebo APl Edited from original

https://github.com/ros-

:> CAN bus controls/control.ros.org/blob/master/doc/resources/diagrams/ros2_control.drawio

Denis Stoal Bence Maavar (ros? control)
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Core Logic

Yp / Joints command generation
angular.z(t) - d

)

steering_angle(t) = arctan( F 0
inear.x

linear.x(t)

speed(t) =
peed(i) r - cos(steering_angle(t))
Odometry
- X: linear.x(t) = speed(t) - r - cos(steering_angle,qq,q(t))

linear.y(t) =0
_ speed(t) -7

y sin(steering_angle,.,q(t))

angular.z(t)

see
http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Kinematics.pdf
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http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Kinematics.pdf
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Extra Features

e Option to publish odom=>base_link directly as tf2_msgs/TFMessage or nav_msgs/Odometry (for further
fusion)

e Timeout and stop if no Twist is received for a configurable amount of time

e Rate limiter - Limits velocity, acceleration, jerk on wheel commands

12
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Extra Features

Scaling the command speed in function of the steering angle difference, in other words: don’t roll too much
before the steering wheel is at the correct angle

CommandSpeed &

alpha write, Ws write] = twist to ackermann(linear command, angular command);
TargetSpeed
X double alpha delta = abs(alpha write - alpha read);
double scale;
if (alpha delta < M PI / 6
scale = 1;
else if (alpha delta > M PI 2
scale 0.01;
else
0.5¢
scale = cos(alpha delta);
Ws write *= scale;
0 2 13
|Target Angle — Current Angle| (radians)
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The controller has been quite stable for us. No bugs have been reported since the release in September 2022

but we are looking forward to more community testing and feedback

There are plans to create a base SteeringController that steering controllers would inherit from (ackermann,

tricycle, bicycle). For more details see: https://github.com/ros-controls/ros2 controllers/pull/484
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https://github.com/ros-controls/ros2_controllers/pull/484
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https://docs.google.com/file/d/1j0FSllXVzTY0HRW_X1SBYUcYwl0J_JH2/preview
https://github.com/ros-controls/gazebo_ros2_control
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