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https://control.ros.org/master/doc/supported_robots/supported_robots.html
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Command and state interfaces



● General, robot-agnostic framework
● Collection of official controllers, defining de-facto 

standard ROS interfaces to 3rd party
● Off-the-shelf Gazebo integration
● Stability
● Supported joint interfaces: position, velocity, effort
● Code complexity high, lots of templating and 

inheritance
● Controller lifecycle inspired by Orocos, custom
● Unclear semantics: everything is the RobotHW or 

controller
● Opt-in Hardware Composition
● RobotHW and boilerplate code
●
●  
●  
●  
●

● ✅
● ✅

● ✅
● Stay tuned!
● Supported joint interfaces: no limitations
● Code leaner, more modern C++

● Controller lifecycle via ROS2 LifecycleNode
● [System|Actuator|Sensor]Component, Controller 

and Broadcaster
● Hardware Composition is first class citizen
● Default ros2_control_node
● Hardware lifecycle
● Synchronous but variable rate for controllers
● Asynchronous controllers
● Joint limiting plugin
● Emergency stop handler plugin

2



Presentation outline

1. Present outline              
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!



URDF extension with 
<ros2_control>-tag



Implementing hardware interface (driver)

https://design.ros2.org/articles/node_lifecycle.html

https://design.ros2.org/articles/node_lifecycle.html


Configuring standard controllers



Using different controllers for control modes



Add controllers for other control-mode 

● Forwarding controller
● Joint Trajectory controller with different set of command interfaces
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About hardware modelling

● Choose hardware interface architecture to your needs
○ Guideline: one communication path – one hardware interface

● Check ros2_control_demos repository for different architecture examples

● Profit from modularity of hardware interfaces – “implement only one time”



Modelling complex hardware – individual components

ros2_control_demos Example: "Modular Robots with separate communication to each actuator"



Modelling complex hardware – “bus through arm” + base

ros2_control_demos Example: "Industrial robot with integrated sensor"



Modelling complex hardware – monolithic components

ros2_control_demos Example: "Robots with multiple interfaces"
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Let’s check an example



This can end-up in convoluted and complex controllers…



Using controller-chaining…

https://github.com/ros-controls/ros2_control_demos/pull/162
https://github.com/ros-controls/ros2_control/pull/667
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Multiple controller managers

1. Using one controller manager – when tight synchronization is needed
2. Using multiple controller managers – when robots are mainly independent



Multiple controller managers

● Robots are mainly independent—swarm robotics
● Uses:

○ Separate namespaces for ros2_control_nodes (controller_manager)
○ Prefixes for joints (hardware interface name also recommended)

Scenario showcase: “Using multiple controller managers on the same machine”
https://github.com/ros-controls/ros2_control_demos/pull/170

https://github.com/ros-controls/ros2_control_demos/pull/170


One controller manager

● Tight coupling and synchronization between robots needed, e.g., dual-arm
● Prefixes for hardware interfaces and joints
● Controllers for one or both
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