
What is new in the best (and
only) control framework for

ROS2 - ros2_control

denis.stogl@stoglrobotics.de

Denis Štogl
● PhD in Robotics from KIT (Karlsruhe, Germany)
● Founder and CEO of Stogl Robotics Consulting
● ros2_control maintainer
● 80% of daily work is ros2_control-related

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!

What & where

pr2_controller_manager

(pr2_mechanism)

2009

ros_control

2012/2013

ros2_control

2017/2020

https://control.ros.org/master/doc/supported_robots/supported_robots.html

https://control.ros.org/master/doc/supported_robots/supported_robots.html

Command and state interfaces

● General, robot-agnostic framework
● Collection of official controllers, defining de-facto

standard ROS interfaces to 3rd party
● Off-the-shelf Gazebo integration
● Stability
● Supported joint interfaces: position, velocity, effort
● Code complexity high, lots of templating and

inheritance
● Controller lifecycle inspired by Orocos, custom
● Unclear semantics: everything is the RobotHW or

controller
● Opt-in Hardware Composition
● RobotHW and boilerplate code
●
●
●
●
●

● ✅
● ✅

● ✅
● Stay tuned!
● Supported joint interfaces: no limitations
● Code leaner, more modern C++

● Controller lifecycle via ROS2 LifecycleNode
● [System|Actuator|Sensor]Component, Controller

and Broadcaster
● Hardware Composition is first class citizen
● Default ros2_control_node
● Hardware lifecycle
● Synchronous but variable rate for controllers
● Asynchronous controllers
● Joint limiting plugin
● Emergency stop handler plugin

2

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!

URDF extension with
<ros2_control>-tag

Implementing hardware interface (driver)

https://design.ros2.org/articles/node_lifecycle.html

https://design.ros2.org/articles/node_lifecycle.html

Configuring standard controllers

Using different controllers for control modes

Add controllers for other control-mode

● Forwarding controller
● Joint Trajectory controller with different set of command interfaces

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!

About hardware modelling

● Choose hardware interface architecture to your needs
○ Guideline: one communication path – one hardware interface

● Check ros2_control_demos repository for different architecture examples

● Profit from modularity of hardware interfaces – “implement only one time”

Modelling complex hardware – individual components

ros2_control_demos Example: "Modular Robots with separate communication to each actuator"

Modelling complex hardware – “bus through arm” + base

ros2_control_demos Example: "Industrial robot with integrated sensor"

Modelling complex hardware – monolithic components

ros2_control_demos Example: "Robots with multiple interfaces"

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!

Let’s check an example

This can end-up in convoluted and complex controllers…

Using controller-chaining…

https://github.com/ros-controls/ros2_control_demos/pull/162
https://github.com/ros-controls/ros2_control/pull/667

https://github.com/ros-controls/ros2_control_demos/pull/162
https://github.com/ros-controls/ros2_control/pull/667

Using controller-chaining…

https://github.com/ros-controls/ros2_control_demos/pull/162
https://github.com/ros-controls/ros2_control/pull/667

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control

We are here!

Multiple controller managers

1. Using one controller manager – when tight synchronization is needed
2. Using multiple controller managers – when robots are mainly independent

Multiple controller managers

● Robots are mainly independent—swarm robotics
● Uses:

○ Separate namespaces for ros2_control_nodes (controller_manager)
○ Prefixes for joints (hardware interface name also recommended)

Scenario showcase: “Using multiple controller managers on the same machine”
https://github.com/ros-controls/ros2_control_demos/pull/170

https://github.com/ros-controls/ros2_control_demos/pull/170

One controller manager

● Tight coupling and synchronization between robots needed, e.g., dual-arm
● Prefixes for hardware interfaces and joints
● Controllers for one or both

Presentation outline

1. Present outline
2. Short history and basic concepts
3. How is ros2_control different from ros_control?
4. I want to use ros2_control! Where to start?

○ About robot description, hardware drivers and controllers
5. But my hardware is complex…
6. Panic! My controllers are getting too convoluted…
7. And what if I have multiple robots?
8. Resources and persons behind ros2_control We are here!

References

● ros_control paper in the Journal of Open Source Software

● ros2_control presentations
○ https://control.ros.org/master/doc/resources/resources.html

● ros2_control resources
○ https://ros-controls.github.io/control.ros.org/
○ https://github.com/ros-controls/ros2_control
○ https://github.com/ros-controls/ros2_controllers
○ https://github.com/ros-controls/ros2_control_demos
○ https://github.com/ros-controls/roadmap/blob/master/documentation_resources.md

https://joss.theoj.org/papers/10.21105/joss.00456
https://control.ros.org/master/doc/resources/resources.html
https://ros-controls.github.io/control.ros.org/
https://github.com/ros-controls/ros2_control
https://github.com/ros-controls/ros2_controllers
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/roadmap/blob/master/documentation_resources.md

Bence Magyar, Denis Štogl,
Karsten Knese, Victor Lopez,
Jordan Palacios, Olivier
Stasse, Mathias Arbo, Jaron
Lundwall, Colin MacKenzie,
Matthew Reynolds, Andy
Zelenak, Lovro Ivanov, Jafar
Abdi, Tyler Weaver, Márk
Szitanics, Michael Wiznitzer,
Paul Gesel, Mateus Amarante,
Auguste Bourgois and many
more!

Thank you!

