ros2_control - rolling
Loading...
Searching...
No Matches
admittance_rule_impl.hpp
1// Copyright (c) 2022, PickNik, Inc.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
16
17#ifndef ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
18#define ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
19
20#include "admittance_controller/admittance_rule.hpp"
21
22#include <memory>
23#include <string>
24#include <vector>
25
26#include <control_toolbox/filters.hpp>
27#include <tf2_eigen/tf2_eigen.hpp>
28
29#include "rclcpp/duration.hpp"
30
32{
33
34constexpr auto NUM_CARTESIAN_DOF = 6; // (3 translation + 3 rotation)
35
37controller_interface::return_type AdmittanceRule::configure(
38 const std::shared_ptr<rclcpp_lifecycle::LifecycleNode> & node, const size_t num_joints,
39 const std::string & robot_description)
40{
41 num_joints_ = num_joints;
42
43 // initialize memory and values to zero (non-realtime function)
44 reset(num_joints);
45
46 // Load the differential IK plugin
47 if (!parameters_.kinematics.plugin_name.empty())
48 {
49 try
50 {
51 // Make sure we destroy the interface first. Otherwise we might run into a segfault
52 if (kinematics_loader_)
53 {
54 kinematics_.reset();
55 }
56 kinematics_loader_ =
57 std::make_shared<pluginlib::ClassLoader<kinematics_interface::KinematicsInterface>>(
58 parameters_.kinematics.plugin_package, "kinematics_interface::KinematicsInterface");
59 kinematics_ = std::unique_ptr<kinematics_interface::KinematicsInterface>(
60 kinematics_loader_->createUnmanagedInstance(parameters_.kinematics.plugin_name));
61
62 if (!kinematics_->initialize(
63 robot_description, node->get_node_parameters_interface(), "kinematics"))
64 {
65 return controller_interface::return_type::ERROR;
66 }
67 }
68 catch (pluginlib::PluginlibException & ex)
69 {
70 RCLCPP_ERROR(
71 rclcpp::get_logger("AdmittanceRule"), "Exception while loading the IK plugin '%s': '%s'",
72 parameters_.kinematics.plugin_name.c_str(), ex.what());
73 return controller_interface::return_type::ERROR;
74 }
75 }
76 else
77 {
78 RCLCPP_ERROR(
79 rclcpp::get_logger("AdmittanceRule"),
80 "A differential IK plugin name was not specified in the config file.");
81 return controller_interface::return_type::ERROR;
82 }
83
84 return controller_interface::return_type::OK;
85}
86
87controller_interface::return_type AdmittanceRule::reset(const size_t num_joints)
88{
89 // reset state message fields
90 state_message_.joint_state.name.assign(num_joints, "");
91 state_message_.joint_state.position.assign(num_joints, 0);
92 state_message_.joint_state.velocity.assign(num_joints, 0);
93 state_message_.joint_state.effort.assign(num_joints, 0);
94 for (size_t i = 0; i < parameters_.joints.size(); ++i)
95 {
96 state_message_.joint_state.name = parameters_.joints;
97 }
98 state_message_.mass.data.resize(NUM_CARTESIAN_DOF, 0.0);
99 state_message_.selected_axes.data.resize(NUM_CARTESIAN_DOF, 0);
100 state_message_.damping.data.resize(NUM_CARTESIAN_DOF, 0);
101 state_message_.stiffness.data.resize(NUM_CARTESIAN_DOF, 0);
102 state_message_.wrench_base.header.frame_id = parameters_.kinematics.base;
103 state_message_.admittance_velocity.header.frame_id = parameters_.kinematics.base;
104 state_message_.admittance_acceleration.header.frame_id = parameters_.kinematics.base;
105
106 // reset admittance state
107 admittance_state_ = AdmittanceState(num_joints);
108
109 // reset forces
110 wrench_world_.setZero();
111 end_effector_weight_.setZero();
112
113 // load/initialize Eigen types from parameters
115
116 return controller_interface::return_type::OK;
117}
118
120{
121 parameter_handler_->try_get_params(parameters_);
122
123 // update param values
124 end_effector_weight_[2] = -parameters_.gravity_compensation.CoG.force;
125 vec_to_eigen(parameters_.gravity_compensation.CoG.pos, cog_pos_);
126 vec_to_eigen(parameters_.admittance.mass, admittance_state_.mass);
127 vec_to_eigen(parameters_.admittance.stiffness, admittance_state_.stiffness);
128 vec_to_eigen(parameters_.admittance.selected_axes, admittance_state_.selected_axes);
129
130 for (size_t i = 0; i < NUM_CARTESIAN_DOF; ++i)
131 {
132 auto idx = static_cast<Eigen::Index>(i);
133 admittance_state_.mass_inv[idx] = 1.0 / parameters_.admittance.mass[i];
134 admittance_state_.damping[idx] =
135 parameters_.admittance.damping_ratio[i] * 2 *
136 sqrt(admittance_state_.mass[idx] * admittance_state_.stiffness[idx]);
137 }
138}
139
140// Update from reference joint states
141controller_interface::return_type AdmittanceRule::update(
142 const trajectory_msgs::msg::JointTrajectoryPoint & current_joint_state,
143 const geometry_msgs::msg::Wrench & measured_wrench,
144 const trajectory_msgs::msg::JointTrajectoryPoint & reference_joint_state,
145 const rclcpp::Duration & period, trajectory_msgs::msg::JointTrajectoryPoint & desired_joint_state)
146{
147 // duration & live-parameter refresh
148 const double dt = period.seconds();
149
150 if (parameters_.enable_parameter_update_without_reactivation)
151 {
153 }
154
155 bool success = true;
156
157 // Reusable transform variable
158 Eigen::Isometry3d tf;
159
160 // --- FT sensor frame to base frame (translation + rotation) ---
161 success &= kinematics_->calculate_link_transform(
162 reference_joint_state.positions, parameters_.ft_sensor.frame.id, tf);
163 admittance_state_.ref_trans_base_ft = tf;
164
165 // --- world frame to base frame (we only need the rotation) ---
166 success &= kinematics_->calculate_link_transform(
167 current_joint_state.positions, parameters_.fixed_world_frame.frame.id, tf);
168 const Eigen::Matrix3d rot_world_base = tf.rotation();
169
170 // --- control/base frame to base frame (rotation only) ---
171 success &= kinematics_->calculate_link_transform(
172 current_joint_state.positions, parameters_.control.frame.id, tf);
173 admittance_state_.rot_base_control = tf.rotation();
174
175 success &= kinematics_->calculate_link_transform(
176 current_joint_state.positions, parameters_.gravity_compensation.frame.id, tf);
177 const Eigen::Matrix3d rot_tf_cog = tf.rotation();
178
179 success &= kinematics_->calculate_link_transform(
180 current_joint_state.positions, parameters_.ft_sensor.frame.id, tf);
181 const Eigen::Matrix3d rot_tf_base_ft = tf.rotation();
182
183 // wrench processing (gravity + filter) in world
185 measured_wrench,
186 // pass rotations into sensor and CoG:
187 rot_world_base * rot_tf_base_ft, rot_world_base * rot_tf_cog);
188
189 // transform filtered wrench into the robot base frame
190 admittance_state_.wrench_base.block<3, 1>(0, 0) =
191 rot_world_base.transpose() * wrench_world_.block<3, 1>(0, 0);
192 admittance_state_.wrench_base.block<3, 1>(3, 0) =
193 rot_world_base.transpose() * wrench_world_.block<3, 1>(3, 0);
194
195 // populate current joint positions in the state
196 vec_to_eigen(current_joint_state.positions, admittance_state_.current_joint_pos);
197
198 admittance_state_.ft_sensor_frame = parameters_.ft_sensor.frame.id;
199
200 // compute admittance dynamics
201 success &= calculate_admittance_rule(admittance_state_, dt);
202 if (!success)
203 {
204 desired_joint_state = reference_joint_state;
205 return controller_interface::return_type::ERROR;
206 }
207
208 // Update final desired_joint_state using the computed transforms
209 for (size_t i = 0; i < num_joints_; ++i)
210 {
211 auto idx = static_cast<Eigen::Index>(i);
212 desired_joint_state.positions[i] =
213 reference_joint_state.positions[i] + admittance_state_.joint_pos[idx];
214 desired_joint_state.velocities[i] =
215 reference_joint_state.velocities[i] + admittance_state_.joint_vel[idx];
216 desired_joint_state.accelerations[i] =
217 reference_joint_state.accelerations[i] + admittance_state_.joint_acc[idx];
218 }
219
220 return controller_interface::return_type::OK;
221}
222
224{
225 // Create stiffness matrix in base frame. The user-provided values of admittance_state.stiffness
226 // correspond to the six diagonal elements of the stiffness matrix expressed in the control frame
227 auto rot_base_control = admittance_state.rot_base_control;
228 Eigen::Matrix<double, 6, 6> K = Eigen::Matrix<double, 6, 6>::Zero();
229 Eigen::Matrix<double, 3, 3> K_pos = Eigen::Matrix<double, 3, 3>::Zero();
230 Eigen::Matrix<double, 3, 3> K_rot = Eigen::Matrix<double, 3, 3>::Zero();
231 K_pos.diagonal() = admittance_state.stiffness.block<3, 1>(0, 0);
232 K_rot.diagonal() = admittance_state.stiffness.block<3, 1>(3, 0);
233 // Transform to the control frame
234 // A reference is here: https://users.wpi.edu/~jfu2/rbe502/files/force_control.pdf
235 // Force Control by Luigi Villani and Joris De Schutter
236 // Page 200
237 K_pos = rot_base_control * K_pos * rot_base_control.transpose();
238 K_rot = rot_base_control * K_rot * rot_base_control.transpose();
239 K.block<3, 3>(0, 0) = K_pos;
240 K.block<3, 3>(3, 3) = K_rot;
241
242 // The same for damping
243 Eigen::Matrix<double, 6, 6> D = Eigen::Matrix<double, 6, 6>::Zero();
244 Eigen::Matrix<double, 3, 3> D_pos = Eigen::Matrix<double, 3, 3>::Zero();
245 Eigen::Matrix<double, 3, 3> D_rot = Eigen::Matrix<double, 3, 3>::Zero();
246 D_pos.diagonal() = admittance_state.damping.block<3, 1>(0, 0);
247 D_rot.diagonal() = admittance_state.damping.block<3, 1>(3, 0);
248 D_pos = rot_base_control * D_pos * rot_base_control.transpose();
249 D_rot = rot_base_control * D_rot * rot_base_control.transpose();
250 D.block<3, 3>(0, 0) = D_pos;
251 D.block<3, 3>(3, 3) = D_rot;
252
253 // calculate admittance relative offset in base frame
254 Eigen::Isometry3d desired_trans_base_ft;
255 kinematics_->calculate_link_transform(
256 admittance_state.current_joint_pos, admittance_state.ft_sensor_frame, desired_trans_base_ft);
257 Eigen::Matrix<double, 6, 1> X;
258 X.block<3, 1>(0, 0) =
259 desired_trans_base_ft.translation() - admittance_state.ref_trans_base_ft.translation();
260 auto R_ref = admittance_state.ref_trans_base_ft.rotation();
261 auto R_desired = desired_trans_base_ft.rotation();
262 auto R = R_desired * R_ref.transpose();
263 auto angle_axis = Eigen::AngleAxisd(R);
264 X.block<3, 1>(3, 0) = angle_axis.angle() * angle_axis.axis();
265
266 // get admittance relative velocity
267 auto X_dot = Eigen::Matrix<double, 6, 1>(admittance_state.admittance_velocity.data());
268
269 // external force expressed in the base frame
270 auto F_base = admittance_state.wrench_base;
271
272 // zero out any forces in the control frame
273 Eigen::Matrix<double, 6, 1> F_control;
274 F_control.block<3, 1>(0, 0) = rot_base_control.transpose() * F_base.block<3, 1>(0, 0);
275 F_control.block<3, 1>(3, 0) = rot_base_control.transpose() * F_base.block<3, 1>(3, 0);
276 F_control = F_control.cwiseProduct(admittance_state.selected_axes);
277 F_base.block<3, 1>(0, 0) = rot_base_control * F_control.block<3, 1>(0, 0);
278 F_base.block<3, 1>(3, 0) = rot_base_control * F_control.block<3, 1>(3, 0);
279
280 // Compute admittance control law in the base frame: F = M*x_ddot + D*x_dot + K*x
281 Eigen::Matrix<double, 6, 1> X_ddot =
282 admittance_state.mass_inv.cwiseProduct(F_base - D * X_dot - K * X);
283 bool success = kinematics_->convert_cartesian_deltas_to_joint_deltas(
284 admittance_state.current_joint_pos, X_ddot, admittance_state.ft_sensor_frame,
285 admittance_state.joint_acc);
286
287 // add damping if cartesian velocity falls below threshold
288 for (int64_t i = 0; i < admittance_state.joint_acc.size(); ++i)
289 {
290 admittance_state.joint_acc[i] -=
291 parameters_.admittance.joint_damping * admittance_state.joint_vel[i];
292 }
293
294 // integrate motion in joint space
295 admittance_state.joint_vel += (admittance_state.joint_acc) * dt;
296 admittance_state.joint_pos += admittance_state.joint_vel * dt;
297
298 // calculate admittance velocity corresponding to joint velocity ("base_link" frame)
299 success &= kinematics_->convert_joint_deltas_to_cartesian_deltas(
300 admittance_state.current_joint_pos, admittance_state.joint_vel,
301 admittance_state.ft_sensor_frame, admittance_state.admittance_velocity);
302 success &= kinematics_->convert_joint_deltas_to_cartesian_deltas(
303 admittance_state.current_joint_pos, admittance_state.joint_acc,
304 admittance_state.ft_sensor_frame, admittance_state.admittance_acceleration);
305
306 return success;
307}
308
310 const geometry_msgs::msg::Wrench & measured_wrench,
311 const Eigen::Matrix<double, 3, 3> & sensor_world_rot,
312 const Eigen::Matrix<double, 3, 3> & cog_world_rot)
313{
314 Eigen::Matrix<double, 3, 2, Eigen::ColMajor> new_wrench;
315 new_wrench(0, 0) = measured_wrench.force.x;
316 new_wrench(1, 0) = measured_wrench.force.y;
317 new_wrench(2, 0) = measured_wrench.force.z;
318 new_wrench(0, 1) = measured_wrench.torque.x;
319 new_wrench(1, 1) = measured_wrench.torque.y;
320 new_wrench(2, 1) = measured_wrench.torque.z;
321
322 // transform to world frame
323 Eigen::Matrix<double, 3, 2> new_wrench_base = sensor_world_rot * new_wrench;
324
325 // apply gravity compensation
326 new_wrench_base(2, 0) -= end_effector_weight_[2];
327 new_wrench_base.block<3, 1>(0, 1) -= (cog_world_rot * cog_pos_).cross(end_effector_weight_);
328
329 // apply smoothing filter
330 for (Eigen::Index i = 0; i < 6; ++i)
331 {
332 wrench_world_(i) = filters::exponentialSmoothing(
333 new_wrench_base(i), wrench_world_(i), parameters_.ft_sensor.filter_coefficient);
334 }
335}
336
337const control_msgs::msg::AdmittanceControllerState & AdmittanceRule::get_controller_state()
338{
339 for (size_t i = 0; i < NUM_CARTESIAN_DOF; ++i)
340 {
341 auto idx = static_cast<Eigen::Index>(i);
342 state_message_.stiffness.data[i] = admittance_state_.stiffness[idx];
343 state_message_.damping.data[i] = admittance_state_.damping[idx];
344 state_message_.selected_axes.data[i] = static_cast<bool>(admittance_state_.selected_axes[idx]);
345 state_message_.mass.data[i] = admittance_state_.mass[idx];
346 }
347
348 for (size_t i = 0; i < parameters_.joints.size(); ++i)
349 {
350 auto idx = static_cast<Eigen::Index>(i);
351 state_message_.joint_state.name[i] = parameters_.joints[i];
352 state_message_.joint_state.position[i] = admittance_state_.joint_pos[idx];
353 state_message_.joint_state.velocity[i] = admittance_state_.joint_vel[idx];
354 state_message_.joint_state.effort[i] = admittance_state_.joint_acc[idx];
355 }
356
357 state_message_.wrench_base.wrench.force.x = admittance_state_.wrench_base[0];
358 state_message_.wrench_base.wrench.force.y = admittance_state_.wrench_base[1];
359 state_message_.wrench_base.wrench.force.z = admittance_state_.wrench_base[2];
360 state_message_.wrench_base.wrench.torque.x = admittance_state_.wrench_base[3];
361 state_message_.wrench_base.wrench.torque.y = admittance_state_.wrench_base[4];
362 state_message_.wrench_base.wrench.torque.z = admittance_state_.wrench_base[5];
363
364 state_message_.admittance_velocity.twist.linear.x = admittance_state_.admittance_velocity[0];
365 state_message_.admittance_velocity.twist.linear.y = admittance_state_.admittance_velocity[1];
366 state_message_.admittance_velocity.twist.linear.z = admittance_state_.admittance_velocity[2];
367 state_message_.admittance_velocity.twist.angular.x = admittance_state_.admittance_velocity[3];
368 state_message_.admittance_velocity.twist.angular.y = admittance_state_.admittance_velocity[4];
369 state_message_.admittance_velocity.twist.angular.z = admittance_state_.admittance_velocity[5];
370
371 state_message_.admittance_acceleration.twist.linear.x =
372 admittance_state_.admittance_acceleration[0];
373 state_message_.admittance_acceleration.twist.linear.y =
374 admittance_state_.admittance_acceleration[1];
375 state_message_.admittance_acceleration.twist.linear.z =
376 admittance_state_.admittance_acceleration[2];
377 state_message_.admittance_acceleration.twist.angular.x =
378 admittance_state_.admittance_acceleration[3];
379 state_message_.admittance_acceleration.twist.angular.y =
380 admittance_state_.admittance_acceleration[4];
381 state_message_.admittance_acceleration.twist.angular.z =
382 admittance_state_.admittance_acceleration[5];
383
384 state_message_.admittance_position = tf2::eigenToTransform(admittance_state_.admittance_position);
385 state_message_.admittance_position.header.frame_id = parameters_.kinematics.base;
386 state_message_.admittance_position.child_frame_id = "admittance_offset";
387
388 state_message_.ref_trans_base_ft = tf2::eigenToTransform(admittance_state_.ref_trans_base_ft);
389 state_message_.ref_trans_base_ft.header.frame_id = parameters_.kinematics.base;
390 state_message_.ref_trans_base_ft.child_frame_id = parameters_.ft_sensor.frame.id;
391
392 Eigen::Quaterniond quat(admittance_state_.rot_base_control);
393 state_message_.rot_base_control.w = quat.w();
394 state_message_.rot_base_control.x = quat.x();
395 state_message_.rot_base_control.y = quat.y();
396 state_message_.rot_base_control.z = quat.z();
397
398 state_message_.ft_sensor_frame.data =
399 admittance_state_.ft_sensor_frame; // TODO(anyone) remove dynamic allocation here
400
401 return state_message_;
402}
403
404template <typename T1, typename T2>
405void AdmittanceRule::vec_to_eigen(const std::vector<T1> & data, T2 & matrix)
406{
407 for (auto col = 0; col < matrix.cols(); col++)
408 {
409 for (auto row = 0; row < matrix.rows(); row++)
410 {
411 matrix(row, col) = data[static_cast<size_t>(row + col * matrix.rows())];
412 }
413 }
414}
415
416} // namespace admittance_controller
417
418#endif // ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
bool calculate_admittance_rule(AdmittanceState &admittance_state, double dt)
Definition admittance_rule_impl.hpp:223
controller_interface::return_type reset(const size_t num_joints)
Reset all values back to default.
Definition admittance_rule_impl.hpp:87
controller_interface::return_type configure(const std::shared_ptr< rclcpp_lifecycle::LifecycleNode > &node, const size_t num_joint, const std::string &robot_description)
Configure admittance rule memory using number of joints.
Definition admittance_rule_impl.hpp:37
void apply_parameters_update()
Definition admittance_rule_impl.hpp:119
const control_msgs::msg::AdmittanceControllerState & get_controller_state()
Definition admittance_rule_impl.hpp:337
controller_interface::return_type update(const trajectory_msgs::msg::JointTrajectoryPoint &current_joint_state, const geometry_msgs::msg::Wrench &measured_wrench, const trajectory_msgs::msg::JointTrajectoryPoint &reference_joint_state, const rclcpp::Duration &period, trajectory_msgs::msg::JointTrajectoryPoint &desired_joint_states)
Definition admittance_rule_impl.hpp:141
void process_wrench_measurements(const geometry_msgs::msg::Wrench &measured_wrench, const Eigen::Matrix< double, 3, 3 > &sensor_world_rot, const Eigen::Matrix< double, 3, 3 > &cog_world_rot)
Definition admittance_rule_impl.hpp:309
Definition admittance_controller.hpp:39
Definition admittance_rule.hpp:36