ros2_control - rolling
Loading...
Searching...
No Matches
admittance_rule_impl.hpp
1// Copyright (c) 2022, PickNik, Inc.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
16
17#ifndef ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
18#define ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
19
20#include "admittance_controller/admittance_rule.hpp"
21
22#include <memory>
23#include <string>
24#include <vector>
25
26#include <control_toolbox/filters.hpp>
27#include <tf2_eigen/tf2_eigen.hpp>
28
29#include "rclcpp/duration.hpp"
30
32{
33
34constexpr auto NUM_CARTESIAN_DOF = 6; // (3 translation + 3 rotation)
35
37controller_interface::return_type AdmittanceRule::configure(
38 const std::shared_ptr<rclcpp_lifecycle::LifecycleNode> & node, const size_t num_joints,
39 const std::string & robot_description)
40{
41 num_joints_ = num_joints;
42
43 // initialize memory and values to zero (non-realtime function)
44 reset(num_joints);
45
46 // Load the differential IK plugin
47 if (!parameters_.kinematics.plugin_name.empty())
48 {
49 try
50 {
51 // Make sure we destroy the interface first. Otherwise we might run into a segfault
52 if (kinematics_loader_)
53 {
54 kinematics_.reset();
55 }
56 kinematics_loader_ =
57 std::make_shared<pluginlib::ClassLoader<kinematics_interface::KinematicsInterface>>(
58 parameters_.kinematics.plugin_package, "kinematics_interface::KinematicsInterface");
59 kinematics_ = std::unique_ptr<kinematics_interface::KinematicsInterface>(
60 kinematics_loader_->createUnmanagedInstance(parameters_.kinematics.plugin_name));
61
62 if (!kinematics_->initialize(
63 robot_description, node->get_node_parameters_interface(), "kinematics"))
64 {
65 return controller_interface::return_type::ERROR;
66 }
67 }
68 catch (pluginlib::PluginlibException & ex)
69 {
70 RCLCPP_ERROR(
71 rclcpp::get_logger("AdmittanceRule"), "Exception while loading the IK plugin '%s': '%s'",
72 parameters_.kinematics.plugin_name.c_str(), ex.what());
73 return controller_interface::return_type::ERROR;
74 }
75 }
76 else
77 {
78 RCLCPP_ERROR(
79 rclcpp::get_logger("AdmittanceRule"),
80 "A differential IK plugin name was not specified in the config file.");
81 return controller_interface::return_type::ERROR;
82 }
83
84 return controller_interface::return_type::OK;
85}
86
87controller_interface::return_type AdmittanceRule::reset(const size_t num_joints)
88{
89 // reset state message fields
90 state_message_.joint_state.name.assign(num_joints, "");
91 state_message_.joint_state.position.assign(num_joints, 0);
92 state_message_.joint_state.velocity.assign(num_joints, 0);
93 state_message_.joint_state.effort.assign(num_joints, 0);
94 for (size_t i = 0; i < parameters_.joints.size(); ++i)
95 {
96 state_message_.joint_state.name = parameters_.joints;
97 }
98 state_message_.mass.data.resize(NUM_CARTESIAN_DOF, 0.0);
99 state_message_.selected_axes.data.resize(NUM_CARTESIAN_DOF, 0);
100 state_message_.damping.data.resize(NUM_CARTESIAN_DOF, 0);
101 state_message_.stiffness.data.resize(NUM_CARTESIAN_DOF, 0);
102 state_message_.wrench_base.header.frame_id = parameters_.kinematics.base;
103 state_message_.admittance_velocity.header.frame_id = parameters_.kinematics.base;
104 state_message_.admittance_acceleration.header.frame_id = parameters_.kinematics.base;
105 state_message_.admittance_position.header.frame_id = parameters_.kinematics.base;
106 state_message_.admittance_position.child_frame_id = "admittance_offset";
107
108 // reset admittance state
109 admittance_state_ = AdmittanceState(num_joints);
110
111 // reset transforms and rotations
112 admittance_transforms_ = AdmittanceTransforms();
113
114 // reset forces
115 wrench_world_.setZero();
116 end_effector_weight_.setZero();
117
118 // load/initialize Eigen types from parameters
120
121 return controller_interface::return_type::OK;
122}
123
125{
126 if (parameter_handler_->is_old(parameters_))
127 {
128 parameters_ = parameter_handler_->get_params();
129 }
130 // update param values
131 end_effector_weight_[2] = -parameters_.gravity_compensation.CoG.force;
132 vec_to_eigen(parameters_.gravity_compensation.CoG.pos, cog_pos_);
133 vec_to_eigen(parameters_.admittance.mass, admittance_state_.mass);
134 vec_to_eigen(parameters_.admittance.stiffness, admittance_state_.stiffness);
135 vec_to_eigen(parameters_.admittance.selected_axes, admittance_state_.selected_axes);
136
137 for (size_t i = 0; i < NUM_CARTESIAN_DOF; ++i)
138 {
139 auto idx = static_cast<Eigen::Index>(i);
140 admittance_state_.mass_inv[idx] = 1.0 / parameters_.admittance.mass[i];
141 admittance_state_.damping[idx] =
142 parameters_.admittance.damping_ratio[i] * 2 *
143 sqrt(admittance_state_.mass[idx] * admittance_state_.stiffness[idx]);
144 }
145}
146
148 const trajectory_msgs::msg::JointTrajectoryPoint & current_joint_state,
149 const trajectory_msgs::msg::JointTrajectoryPoint & reference_joint_state)
150{
151 // get reference transforms
152 bool success = kinematics_->calculate_link_transform(
153 reference_joint_state.positions, parameters_.ft_sensor.frame.id,
154 admittance_transforms_.ref_base_ft_);
155
156 // get transforms at current configuration
157 success &= kinematics_->calculate_link_transform(
158 current_joint_state.positions, parameters_.ft_sensor.frame.id, admittance_transforms_.base_ft_);
159 success &= kinematics_->calculate_link_transform(
160 current_joint_state.positions, parameters_.kinematics.tip, admittance_transforms_.base_tip_);
161 success &= kinematics_->calculate_link_transform(
162 current_joint_state.positions, parameters_.fixed_world_frame.frame.id,
163 admittance_transforms_.world_base_);
164 success &= kinematics_->calculate_link_transform(
165 current_joint_state.positions, parameters_.gravity_compensation.frame.id,
166 admittance_transforms_.base_cog_);
167 success &= kinematics_->calculate_link_transform(
168 current_joint_state.positions, parameters_.control.frame.id,
169 admittance_transforms_.base_control_);
170
171 return success;
172}
173
174// Update from reference joint states
175controller_interface::return_type AdmittanceRule::update(
176 const trajectory_msgs::msg::JointTrajectoryPoint & current_joint_state,
177 const geometry_msgs::msg::Wrench & measured_wrench,
178 const trajectory_msgs::msg::JointTrajectoryPoint & reference_joint_state,
179 const rclcpp::Duration & period, trajectory_msgs::msg::JointTrajectoryPoint & desired_joint_state)
180{
181 const double dt = period.seconds();
182
183 if (parameters_.enable_parameter_update_without_reactivation)
184 {
186 }
187
188 bool success = get_all_transforms(current_joint_state, reference_joint_state);
189
190 // apply filter and update wrench_world_ vector
191 Eigen::Matrix<double, 3, 3> rot_world_sensor =
192 admittance_transforms_.world_base_.rotation() * admittance_transforms_.base_ft_.rotation();
193 Eigen::Matrix<double, 3, 3> rot_world_cog =
194 admittance_transforms_.world_base_.rotation() * admittance_transforms_.base_cog_.rotation();
195 process_wrench_measurements(measured_wrench, rot_world_sensor, rot_world_cog);
196
197 // transform wrench_world_ into base frame
198 admittance_state_.wrench_base.block<3, 1>(0, 0) =
199 admittance_transforms_.world_base_.rotation().transpose() * wrench_world_.block<3, 1>(0, 0);
200 admittance_state_.wrench_base.block<3, 1>(3, 0) =
201 admittance_transforms_.world_base_.rotation().transpose() * wrench_world_.block<3, 1>(3, 0);
202
203 // Compute admittance control law
204 vec_to_eigen(current_joint_state.positions, admittance_state_.current_joint_pos);
205 admittance_state_.rot_base_control = admittance_transforms_.base_control_.rotation();
206 admittance_state_.ref_trans_base_ft = admittance_transforms_.ref_base_ft_;
207 admittance_state_.ft_sensor_frame = parameters_.ft_sensor.frame.id;
208 success &= calculate_admittance_rule(admittance_state_, dt);
209
210 // if a failure occurred during any kinematics interface calls, return an error and don't
211 // modify the desired reference
212 if (!success)
213 {
214 desired_joint_state = reference_joint_state;
215 return controller_interface::return_type::ERROR;
216 }
217
218 // update joint desired joint state
219 for (size_t i = 0; i < num_joints_; ++i)
220 {
221 auto idx = static_cast<Eigen::Index>(i);
222 desired_joint_state.positions[i] =
223 reference_joint_state.positions[i] + admittance_state_.joint_pos[idx];
224 desired_joint_state.velocities[i] =
225 reference_joint_state.velocities[i] + admittance_state_.joint_vel[idx];
226 desired_joint_state.accelerations[i] =
227 reference_joint_state.accelerations[i] + admittance_state_.joint_acc[idx];
228 }
229
230 return controller_interface::return_type::OK;
231}
232
234{
235 // Create stiffness matrix in base frame. The user-provided values of admittance_state.stiffness
236 // correspond to the six diagonal elements of the stiffness matrix expressed in the control frame
237 auto rot_base_control = admittance_state.rot_base_control;
238 Eigen::Matrix<double, 6, 6> K = Eigen::Matrix<double, 6, 6>::Zero();
239 Eigen::Matrix<double, 3, 3> K_pos = Eigen::Matrix<double, 3, 3>::Zero();
240 Eigen::Matrix<double, 3, 3> K_rot = Eigen::Matrix<double, 3, 3>::Zero();
241 K_pos.diagonal() = admittance_state.stiffness.block<3, 1>(0, 0);
242 K_rot.diagonal() = admittance_state.stiffness.block<3, 1>(3, 0);
243 // Transform to the control frame
244 // A reference is here: https://users.wpi.edu/~jfu2/rbe502/files/force_control.pdf
245 // Force Control by Luigi Villani and Joris De Schutter
246 // Page 200
247 K_pos = rot_base_control * K_pos * rot_base_control.transpose();
248 K_rot = rot_base_control * K_rot * rot_base_control.transpose();
249 K.block<3, 3>(0, 0) = K_pos;
250 K.block<3, 3>(3, 3) = K_rot;
251
252 // The same for damping
253 Eigen::Matrix<double, 6, 6> D = Eigen::Matrix<double, 6, 6>::Zero();
254 Eigen::Matrix<double, 3, 3> D_pos = Eigen::Matrix<double, 3, 3>::Zero();
255 Eigen::Matrix<double, 3, 3> D_rot = Eigen::Matrix<double, 3, 3>::Zero();
256 D_pos.diagonal() = admittance_state.damping.block<3, 1>(0, 0);
257 D_rot.diagonal() = admittance_state.damping.block<3, 1>(3, 0);
258 D_pos = rot_base_control * D_pos * rot_base_control.transpose();
259 D_rot = rot_base_control * D_rot * rot_base_control.transpose();
260 D.block<3, 3>(0, 0) = D_pos;
261 D.block<3, 3>(3, 3) = D_rot;
262
263 // calculate admittance relative offset in base frame
264 Eigen::Isometry3d desired_trans_base_ft;
265 kinematics_->calculate_link_transform(
266 admittance_state.current_joint_pos, admittance_state.ft_sensor_frame, desired_trans_base_ft);
267 Eigen::Matrix<double, 6, 1> X;
268 X.block<3, 1>(0, 0) =
269 desired_trans_base_ft.translation() - admittance_state.ref_trans_base_ft.translation();
270 auto R_ref = admittance_state.ref_trans_base_ft.rotation();
271 auto R_desired = desired_trans_base_ft.rotation();
272 auto R = R_desired * R_ref.transpose();
273 auto angle_axis = Eigen::AngleAxisd(R);
274 X.block<3, 1>(3, 0) = angle_axis.angle() * angle_axis.axis();
275
276 // get admittance relative velocity
277 auto X_dot = Eigen::Matrix<double, 6, 1>(admittance_state.admittance_velocity.data());
278
279 // external force expressed in the base frame
280 auto F_base = admittance_state.wrench_base;
281
282 // zero out any forces in the control frame
283 Eigen::Matrix<double, 6, 1> F_control;
284 F_control.block<3, 1>(0, 0) = rot_base_control.transpose() * F_base.block<3, 1>(0, 0);
285 F_control.block<3, 1>(3, 0) = rot_base_control.transpose() * F_base.block<3, 1>(3, 0);
286 F_control = F_control.cwiseProduct(admittance_state.selected_axes);
287 F_base.block<3, 1>(0, 0) = rot_base_control * F_control.block<3, 1>(0, 0);
288 F_base.block<3, 1>(3, 0) = rot_base_control * F_control.block<3, 1>(3, 0);
289
290 // Compute admittance control law in the base frame: F = M*x_ddot + D*x_dot + K*x
291 Eigen::Matrix<double, 6, 1> X_ddot =
292 admittance_state.mass_inv.cwiseProduct(F_base - D * X_dot - K * X);
293 bool success = kinematics_->convert_cartesian_deltas_to_joint_deltas(
294 admittance_state.current_joint_pos, X_ddot, admittance_state.ft_sensor_frame,
295 admittance_state.joint_acc);
296
297 // add damping if cartesian velocity falls below threshold
298 for (int64_t i = 0; i < admittance_state.joint_acc.size(); ++i)
299 {
300 admittance_state.joint_acc[i] -=
301 parameters_.admittance.joint_damping * admittance_state.joint_vel[i];
302 }
303
304 // integrate motion in joint space
305 admittance_state.joint_vel += (admittance_state.joint_acc) * dt;
306 admittance_state.joint_pos += admittance_state.joint_vel * dt;
307
308 // calculate admittance velocity corresponding to joint velocity ("base_link" frame)
309 success &= kinematics_->convert_joint_deltas_to_cartesian_deltas(
310 admittance_state.current_joint_pos, admittance_state.joint_vel,
311 admittance_state.ft_sensor_frame, admittance_state.admittance_velocity);
312 success &= kinematics_->convert_joint_deltas_to_cartesian_deltas(
313 admittance_state.current_joint_pos, admittance_state.joint_acc,
314 admittance_state.ft_sensor_frame, admittance_state.admittance_acceleration);
315
316 return success;
317}
318
320 const geometry_msgs::msg::Wrench & measured_wrench,
321 const Eigen::Matrix<double, 3, 3> & sensor_world_rot,
322 const Eigen::Matrix<double, 3, 3> & cog_world_rot)
323{
324 Eigen::Matrix<double, 3, 2, Eigen::ColMajor> new_wrench;
325 new_wrench(0, 0) = measured_wrench.force.x;
326 new_wrench(1, 0) = measured_wrench.force.y;
327 new_wrench(2, 0) = measured_wrench.force.z;
328 new_wrench(0, 1) = measured_wrench.torque.x;
329 new_wrench(1, 1) = measured_wrench.torque.y;
330 new_wrench(2, 1) = measured_wrench.torque.z;
331
332 // transform to world frame
333 Eigen::Matrix<double, 3, 2> new_wrench_base = sensor_world_rot * new_wrench;
334
335 // apply gravity compensation
336 new_wrench_base(2, 0) -= end_effector_weight_[2];
337 new_wrench_base.block<3, 1>(0, 1) -= (cog_world_rot * cog_pos_).cross(end_effector_weight_);
338
339 // apply smoothing filter
340 for (Eigen::Index i = 0; i < 6; ++i)
341 {
342 wrench_world_(i) = filters::exponentialSmoothing(
343 new_wrench_base(i), wrench_world_(i), parameters_.ft_sensor.filter_coefficient);
344 }
345}
346
347const control_msgs::msg::AdmittanceControllerState & AdmittanceRule::get_controller_state()
348{
349 for (size_t i = 0; i < NUM_CARTESIAN_DOF; ++i)
350 {
351 auto idx = static_cast<Eigen::Index>(i);
352 state_message_.stiffness.data[i] = admittance_state_.stiffness[idx];
353 state_message_.damping.data[i] = admittance_state_.damping[idx];
354 state_message_.selected_axes.data[i] = static_cast<bool>(admittance_state_.selected_axes[idx]);
355 state_message_.mass.data[i] = admittance_state_.mass[idx];
356 }
357
358 for (size_t i = 0; i < parameters_.joints.size(); ++i)
359 {
360 auto idx = static_cast<Eigen::Index>(i);
361 state_message_.joint_state.name[i] = parameters_.joints[i];
362 state_message_.joint_state.position[i] = admittance_state_.joint_pos[idx];
363 state_message_.joint_state.velocity[i] = admittance_state_.joint_vel[idx];
364 state_message_.joint_state.effort[i] = admittance_state_.joint_acc[idx];
365 }
366
367 state_message_.wrench_base.wrench.force.x = admittance_state_.wrench_base[0];
368 state_message_.wrench_base.wrench.force.y = admittance_state_.wrench_base[1];
369 state_message_.wrench_base.wrench.force.z = admittance_state_.wrench_base[2];
370 state_message_.wrench_base.wrench.torque.x = admittance_state_.wrench_base[3];
371 state_message_.wrench_base.wrench.torque.y = admittance_state_.wrench_base[4];
372 state_message_.wrench_base.wrench.torque.z = admittance_state_.wrench_base[5];
373
374 state_message_.admittance_velocity.twist.linear.x = admittance_state_.admittance_velocity[0];
375 state_message_.admittance_velocity.twist.linear.y = admittance_state_.admittance_velocity[1];
376 state_message_.admittance_velocity.twist.linear.z = admittance_state_.admittance_velocity[2];
377 state_message_.admittance_velocity.twist.angular.x = admittance_state_.admittance_velocity[3];
378 state_message_.admittance_velocity.twist.angular.y = admittance_state_.admittance_velocity[4];
379 state_message_.admittance_velocity.twist.angular.z = admittance_state_.admittance_velocity[5];
380
381 state_message_.admittance_acceleration.twist.linear.x =
382 admittance_state_.admittance_acceleration[0];
383 state_message_.admittance_acceleration.twist.linear.y =
384 admittance_state_.admittance_acceleration[1];
385 state_message_.admittance_acceleration.twist.linear.z =
386 admittance_state_.admittance_acceleration[2];
387 state_message_.admittance_acceleration.twist.angular.x =
388 admittance_state_.admittance_acceleration[3];
389 state_message_.admittance_acceleration.twist.angular.y =
390 admittance_state_.admittance_acceleration[4];
391 state_message_.admittance_acceleration.twist.angular.z =
392 admittance_state_.admittance_acceleration[5];
393
394 state_message_.admittance_position = tf2::eigenToTransform(admittance_state_.admittance_position);
395
396 state_message_.ref_trans_base_ft.header.frame_id = parameters_.kinematics.base;
397 state_message_.ref_trans_base_ft.header.frame_id = "ft_reference";
398 state_message_.ref_trans_base_ft = tf2::eigenToTransform(admittance_state_.ref_trans_base_ft);
399
400 Eigen::Quaterniond quat(admittance_state_.rot_base_control);
401 state_message_.rot_base_control.w = quat.w();
402 state_message_.rot_base_control.x = quat.x();
403 state_message_.rot_base_control.y = quat.y();
404 state_message_.rot_base_control.z = quat.z();
405
406 state_message_.ft_sensor_frame.data =
407 admittance_state_.ft_sensor_frame; // TODO(anyone) remove dynamic allocation here
408
409 return state_message_;
410}
411
412template <typename T1, typename T2>
413void AdmittanceRule::vec_to_eigen(const std::vector<T1> & data, T2 & matrix)
414{
415 for (auto col = 0; col < matrix.cols(); col++)
416 {
417 for (auto row = 0; row < matrix.rows(); row++)
418 {
419 matrix(row, col) = data[static_cast<size_t>(row + col * matrix.rows())];
420 }
421 }
422}
423
424} // namespace admittance_controller
425
426#endif // ADMITTANCE_CONTROLLER__ADMITTANCE_RULE_IMPL_HPP_
bool calculate_admittance_rule(AdmittanceState &admittance_state, double dt)
Definition admittance_rule_impl.hpp:233
bool get_all_transforms(const trajectory_msgs::msg::JointTrajectoryPoint &current_joint_state, const trajectory_msgs::msg::JointTrajectoryPoint &reference_joint_state)
Definition admittance_rule_impl.hpp:147
controller_interface::return_type reset(const size_t num_joints)
Reset all values back to default.
Definition admittance_rule_impl.hpp:87
controller_interface::return_type configure(const std::shared_ptr< rclcpp_lifecycle::LifecycleNode > &node, const size_t num_joint, const std::string &robot_description)
Configure admittance rule memory using number of joints.
Definition admittance_rule_impl.hpp:37
void apply_parameters_update()
Definition admittance_rule_impl.hpp:124
const control_msgs::msg::AdmittanceControllerState & get_controller_state()
Definition admittance_rule_impl.hpp:347
controller_interface::return_type update(const trajectory_msgs::msg::JointTrajectoryPoint &current_joint_state, const geometry_msgs::msg::Wrench &measured_wrench, const trajectory_msgs::msg::JointTrajectoryPoint &reference_joint_state, const rclcpp::Duration &period, trajectory_msgs::msg::JointTrajectoryPoint &desired_joint_states)
Definition admittance_rule_impl.hpp:175
void process_wrench_measurements(const geometry_msgs::msg::Wrench &measured_wrench, const Eigen::Matrix< double, 3, 3 > &sensor_world_rot, const Eigen::Matrix< double, 3, 3 > &cog_world_rot)
Definition admittance_rule_impl.hpp:319
Definition admittance_controller.hpp:39
Definition admittance_rule.hpp:56
Definition admittance_rule.hpp:36